Пластинчатый теплообменник Машимпэкс (GEA) NX250L Улан-Удэ

Московская, Ангарск й квартал, 16 Краснодар ул.

Теплообменник пластинчатый марки Пластинчатый теплообменник Машимпэкс (GEA) NX250L Улан-Удэ

Компоновка пластин в паяном пластинчатом теплообменнике. Сферы применения паяных пластинчатых теплообменников. Преимущества паяных пластинчатых теплообменников. Из-за отсутствия зажимной конструкции паяные пластинчатые теплообменники исключительно компактны, а также. Работа с повышенными нагрузками.

Паяный пластинчатый теплообменник устойчив к длительным высокотемпературным нагрузкам при температуре в подающем. Простое обслуживание и сервис. Паяные пластинчатые теплообменники не требуют текущего обслуживания. Поверхность пластин обычно очищают. Процесс промывки занимает всего часа, то есть перерыв в технологическом процессе минимален.

Основные типы паяных пластинчатых теплообменников из типоразмерного ряда: Поэтому срок готовности оборудования к отгрузке - всего 1 день! Информацию о наличии конкретного паяного пластинчатого теплообменника ПТТО уточняйте у инженеров-консультантов. Ограничения по использованию паяных пластинчатых теплообменников.

Условием применения паяных пластинчатых теплообменников является отсутствие в процессе эксплуатации нерастворимых. Также необходимо избегать попадания в теплообменник веществ, которые могут разрушить. Огромная часть неполадок, ведущих к необходимости проведения ремонта пластинчатого теплообменника , своей причиной имеет низкое качество жидкости-теплоносителя.

В современных системах отопления зачастую в качестве жидкости-теплоносителя используется обычная вода, которая не редко не проходит весь комплекс водоочистительных мер. В воде, не прошедшей водоподготовку, могут содержаться различного рода примеси как растворенные, так и нерастворимые, которые способны спровоцировать неполадки в работе системы и, как следствие, необходимость проведения ремонта пластинчатого теплообменника.

Одной из наиболее распространенных проблем, ведущих к ремонту теплообменника, является возникновение на внутренних поверхностях различного рода накипи, которая существенно понижает теплопроводность элементов теплообменника, что, в свою очередь, приводит к снижению эффективности системы и увеличению расходов на поддержание необходимых температурных параметров.

Необходимость ремонта теплообменников в подобных ситуациях возникает при отсутствии регулярной промывки, во время которой из системы удаляется большая часть загрязнителей. Теплообменник - важный элемент системы отопления, ГВС или технологического оборудования. Диагностика технического состояния и выдача рекомендаций по дальнейшей эксплуатации теплообменников, в том числе: Поставка и замена запасных частей и принадлежностей к теплообменникам: Подбор и поставка химических реагентов для очистки теплообменников.

Перед переключением аппаратуры в режим нормальной работы после химической промывки теплообменника необходимо провести пробный прогон теплообменной жидкости с целью выявления возможных неполадок в работе, проверить отсутствие течей, а также измерить давление и температуру, которые должны соответствовать заданным параметрам.

В случае обнаружения неполадок в системе после проведения химической промывки теплообменника рекомендуется в первую очередь установить и устранить причины неполадок, а после устранить следствия. Выбор реагента для химической промывки теплообменника должен основываться на анализе загрязнителей, который выявит состав налета, его свойства и характер.

При промывке теплообменников кислотой необходимо учитывать прежде всего характер загрязнителя, однако не меньшую важность представляют собой такие факторы как свойства материалов, из которых изготовлены пластины теплообменника, и аспекты работы самой системы. Разрушение накипи при промывке теплообменников кислотой происходит следующим образом: Пузырьки водорода и углекислоты в свою очередь разрушают налет, вынуждая последний переходить в раствор с поверхности пластин.

Также необходимо исключить возможность возгорания или искрения в непосредственной близости от теплообменника или установки для промывки теплообменников кислотой. Соляная и серная кислота наиболее быстро и эффективно разрушают образовавшийся в ходе работы системы налет, однако следует учитывать, что уровень pH подобных растворов обычно находится на отметке 1, что может негативно сказаться на пластинах теплообменника.

Особую опасность для пластин теплообменников, как и следует предположить, представляют растворы с высокой кислотностью, то есть растворы соляной и серной кислоты. Мы готовы проконсультировать вас и по другим вопросам, связанным с эксплуатацией котельного оборудования. Читайте подробнее о чистке газовых котлов. Пластинчатые теплообменники — это устройство, в котором осуществляется передача тепла от теплоносителя к нагреваемой среде.

При работе пластинчатого теплообменника в аппарате через гофрированные пластины циркулирует какого-либо рода жидкость, которая и является теплоносителем. Пластинчатые теплообменники считаются одним из наиболее надежных видов обогревательного оборудования, однако, как и любой другой вид пластинчатые теплообменники имеют ряд минусов.

Так, например, для успешной работы теплообменника серьезную опасность представляет отсутствие своевременной промывки пластинчатого теплообменника, так как во время циркуляции жидкости растворенные в ней вещества оседают на пластины теплообменника, что приводит к засорению и, как следствие, к затрудненной передаче тепла.

Среди гарантий долгой службы и нормальной работы теплообменников любого типа можно назвать своевременную промывку теплообменников. Наибольшую опасность для пластинчатых теплообменников представляет образовавшаяся в ходе работы оборудования накипь. Накипь — это осевшие на поверхности пластин теплообменника растворенные вещества.

Наиболее распространенным типом накипи считаются осевшие соли жесткости и гидроокись магния, которые сравнительно легко удаляются при химической промывке теплообменника, однако существуют и иные типы накипи. Так, например, накипь, состоящая из продуктов коррозии, считается одной из наиболее сложных видов накипи и может быть удалена только при механической промывки пластинчатых теплообменников.

Химическая промывка пластинчатых теплообменников. Для промывки пластинчатого теплообменника могут быть использованы различные химические реагенты, выбор же оптимального осуществляется на основе данных о составе накипи, так как именно состав накипи определяет целесообразность использования тех или иных средств для промывки теплообменника. Для химической промывки пластинчатых теплообменников не требуется разбирать оборудование, что существенно снижает расходы на промывку теплообменника.

Это достигается за счет использования специального оборудования, которое позволяет ввести в теплообменник очищающие средства и вывести загрязненную воду вместе с накипью. Химическая промывка пластинчатых теплообменников вне зависимости от типа отложений на пластинах производится следующим образом: При наличии в теплообменнике разнородных отложений процедура с использованием различных реагентов повторяется несколько раз.

После химической промывки пластинчатого теплообменника перед его переходом в режим нормальной работы следует произвести ряд проверок: Эти меры считаются необходимыми в виду возможности выхода из строя оборудования при несоответствии тех или иных аспектов работы определенным нормам, поэтому в большинстве случаев химическая промывка пластинчатых теплообменников завершается комплексной проверки функциональности нагревательного оборудования.

Разборная или механическая промывка пластинчатых теплообменников представляет собой меру, которая необходима в крайних случаях, когда теплообменник сильно засорен сложными видами накипи вроде продуктов коррозии. Для механической промывки пластинчатых теплообменников чаще всего используется специальное оборудование, которое позволяет создать необходимое для эффективности механической очистки воды давление.

Так как суть метода гидродинамической промывки пластинчатых теплообменников заключается в подаче сильной струи воды непосредственно на пластины теплообменника, то, соответственно, необходимой мерой является предшествующая промывке разборка теплообменника. Как и следует предположить, механическая промывка пластинчатых теплообменников применима только по отношению к разборным теплообменникам: Особое внимание при механической промывке пластинчатых теплообменников следует уделять обратной сборке пластин теплообменника.

Как и в случае с химической промывкой теплообменников, перед их переходом в режим нормальной работы следует провести ряд испытаний, в соответствии с которыми выявляются возможные неполадки сбора. При наличии в теплообменнике течей или любых иных неполадок необходимо произвести повторную разборку и правильную сборку теплообменника, что предотвратит возможные неполадки в последующей работе теплообменника.

Как правило, комплексная промывка пластинчатых теплообменников производится в тех случаях, когда степень загрязнения теплообменника крайне высока, а накипь, осевшая на пластинах теплообменника в ходе работы, относится к типам сложно удаляемых отложений. Разборная химическая промывка пластинчатых теплообменников производится в несколько этапов: Как и в случае с обычной химической промывкой теплообменников, подбор реагентов для комплексной очистки необходимо осуществлять с учетом данных о составе, характере и свойствах отложений на пластинах, так как именно эти аспекты обуславливают возможность применения тех или иных реагентов для промывки пластинчатых теплообменников.

Как и в случае простой механической промывки пластинчатых теплообменников этот метод применим только для разборного оборудования и не подходит для паяных теплообменников, так как оба этих метода промывки пластинчатых теплообменников предполагают извлечение функциональных пластин из оборудования, что, конечно, невозможно в случае с паяными теплообменниками. Нейтрализация химических реагентов производится при помощи специальных растворов нейтрализующих реагенты веществ, что в свою очередь предполагает дополнительные расходы и еще выше поднимают стоимость разборной химической промывки пластинчатых теплообменников.

Сегодня на большинстве современных предприятий используются пластинчатые теплообменники, так как именно этот тип нагревательного оборудования считается наиболее эффективным и наименее затратным. Низкие эксплуатационные затраты пластинчатых теплообменников прежде всего связаны с их высокой эффективностью, однако немалую роль играет и промывка пластинчатых теплообменников.

В отличии от большинства типов теплообменных аппаратов пластинчатые теплообменники требует гораздо более редкой промывки, что прежде всего связано с турбулентностью потока среды-теплоносителя — большая часть отложений попросту не оседает на поверхности пластин, однако это не означает, что промывка пластинчатых теплообменников является необязательной мерой.

Осевшие на пластинах теплообменника загрязнители прежде всего изменяют теплопроводность пластин, которые специально изготовляются из тонкого металла для увеличения теплопроводности. В конечном итоге снижение теплопроводности приводит к потере системой эффективности либо же к увеличению затрат на поддержание заданных температурных значений.

Регулярная промывка пластинчатых теплообменников позволяет предотвратить потерю эффективности путем удаления осевших загрязнителей. Помимо непосредственного вреда теплопроводности системы оседающие на пластинах теплообменника загрязнители способны также привести к возникновению аварийных ситуаций, расходы на устранение последствий которых существенно превышают расходы на своевременную и регулярную промывку пластинчатых теплообменников.

Таким образом, регулярная промывка пластинчатых теплообменников является необходимой мерой, которая не только позволяет поддерживать эффективность системы на должном уровне, но и помогает избежать расходов, связанных с капитальным ремонтом или полной заменой системы. Катальный ремонт теплообменников состоит из следующих этапов: Очистка всех пластин теплообменника от накипи, отложений и налетов, образованных в процессе эксплуатации;.

При загрязнении рабочих поверхностей теплообменника ухудшаются условия течения теплоносителя и теплопередача, что приводит к снижению мощности теплообменника. Первое выражается в увеличении потерь давления в теплообменнике, во втором случае снижается температура нагреваемого контура на выходе из теплообменника.

В результате увеличиваются тепловые потери. В большинстве случаев приходится иметь дело с накипью и отложениями окислов железа или других соединений железа , а также с их совместным действием. Общее требование использования пластинчатых теплообменников, что их нельзя оставлять стоять сухими в нерабочее время, например отопительные теплообменники в промежутке между отопительными периодами.

Это требование особенно актуально в отношении паяных пластинчатых теплообменников, так как позже промывка высохших и затвердевших отложений может оказаться невозможной. Если все-таки возникает потребность оставить теплообменник на долгое время вне работы, то его следует наполнить водой лучше дистилированной.

Для оценки загрязнений пластинчатого теплообменника следует во время его работы следить за следующими характеристиками:. Анализ состояния оборудования и собранных данных о работе, а также планирование работ, необходимых для ухода, позволяет избегать неприятных и неожиданных сбоев в работе.

При определенной необходимости чистки пластинчатого теплообменника следует прежде всего выбрать необходимый способ промывки. Для разборных пластинчатых теплообменников одной из возможностей является трудоемкая разборка теплообменника и механическая чистка вынутых рабочих пластин. В составе первичных накипей содержаться карбонат кальция, сульфат кальция, гидрат оксида магния, силикаты кальция.

В железноокисных накипях содержится гематит и магнетит и как примеси силикаты и фосфаты кальция и магния. Наиболее легко относительно быстро, при меньших концентрациях реагентов, при более высоком значении рН, при более низких температурах растворяются карбонатные отложения, содержащие карбонат кальция и гидроксид магния, несколько менее растворимы продукты коррозии ржавчина и наносные шламы, содержащие оксиды железа III и IV.

Трудно растворимы отложения, содержащие силикаты CuO, MgO, SiO2 и органические соединения,накипь карбонат кальция, сульфат кальция. Все накипи вызывают ухудшение теплопередачи и, как следствие, увеличение пережога топлива и перегрева металла. При большой толщине накипи увеличивается сопротивление проходу воды, происходит нарушение циркуляции, что ведёт к пережогу металла.

Шлам, скапливающийся в нижних частях теплообменника может вызывать нарушение циркуляции. Полная замена всех уплотнителей, срок службы которых превышает лет;. Пациент - небольшой пластинчатый теплообменник, работающий на ГВС. Срок службы - 3 месяца. Почему это может происходить? В период эксплуатации наиболее вероятны 2 причины.

К примеру, из-за повышенной жесткой воды, проходящей через теплообменник. Впрочем, то, что вода жесткая, можно увидеть. Как узнать, что теплообменник забился? Самое простое - посмотреть на манометры, контролирующие перепад давления. Если перепад повышенный, а расход жидкости, идущей через теплообменник, не превышает тот,. Лечение простое - теплообменник, вернее его пластины, нуждается в очистке.

Выбор разборной или безразборной очистки. Повышенный расход жидкости по контуру теплообменника. Почему повышенный и повышенный по сравнению с чем? Здесь следует обратиться к паспорту теплообменника или шильду. Часто замерить расход по контуру теплообменника на месте. Заметим, что служба сервис использует для этих целей переносной ультразвуковой. Лечение - кажется, что звучит просто: Но не всегда этого достаточно.

К примеру, если входная температура теплоносителя занижена, то расчетный расход на греющем контуре не приведет к нужной. Необходимо произвести пересчет теплообменника - изменить конструкцию теплообменника,. И, при необходимости, произвести увеличение количества.

Если это не помогает, решить вопрос об установке дополнительного теплообменника или демонтаже существующего. Причина повышенного перепада может состоять и в повышенном по сравнению с расчетным расходе жидкости по нагреваемому. Например, теплообменник ГВС был рассчитан и установлен в тепловом пункте односекционного многоэтажного дома.

Но как это часто бывает, к первой секции пристроили вторую такую же, а увеличение жильцов, и соответственно увеличение. Профилактика - в случае, если фактические значения входной температуры теплоносителя или расхода по нагреваемому. Если нет - принять. Безусловно, лучше это делать еще на стадии проектирования объекта и выбора.

Полный и тщательный осмотр пластин на предмет выявляется следов коррозии. Удаление пластин со следами коррозии. Пациент - пластинчатый теплообменник, работающий на отоплении в только что смонтированном и пущенном тепловом пункте. Срок службы - 2 дня. При выезде на объект и разборке теплообменника так и оказалось: Лечение - теплообменник чистим. Профилактика - учесть при обвязке теплообменника рекомендации производителя, Обязательно производить.

Промывка химическими средствами пластин теплообменника без разборки теплообменника. Пациент - пластинчатый теплообменник, работающий на отоплении, среды - пар и вода. Срок службы - 2 месяца. При выезде сотрудника службы сервиса на объект и разборке теплообменника было обнаружено, что прокладки по виду остались. При проверке температурного режима работы котла, подающего.

Лечение - полная замена прокладок в теплообменнике, регулирование входной температуры теплоносителя, чтобы она. Например, введением дополнительных редукционных. Профилактика - заранее знать максимальную температуру теплоносителя, который может прийти в теплообменник, и проверить,. Как вариант, в процессе капитального ремонта теплообменников может быть использована механическая разборная.

Пациент - пластинчатый теплообменник, еще не работающий и только что обвязанный. Срок службы - не работал. Жалоба крайне редкая, а потому необычная. При разборке теплообменника выяснилось, что несколько пластин в конце пакета. Через теплообменник пошел сварочный ток, и между пластинами. Лечение - заменить испорченные пластины.

Пациент - пластинчатый теплообменник теплового пункта. Срок службы - 11 месяцев. Перетекание сред часто означает, что пластины имеют отверстия - иногда видимые, иногда. Чтобы отложения лучше очищались, добавили реагент. После проведения небольшого расследования. Он действительно хорошо очищает пластины. Лечение - дефектовка всех пластин в теплообменнике визуально, цветовой дефектоскопией, опрессовками и отбраковка.

Часто очистка теплообменника неизвестными. На тепловом пункте ЖКХ г. КТТО имели значительные массогабаритные характеристики, что в свою очередь затрудняло. Теплообменники забивались, требовали частой чистки и заглушки пучков, что приводило к потере мощности. Теплообменное оборудование было подобрано на одинаковые технические характеристики тепловая нагрузка, поверхность.

Экономический эффект от внедрения ПТО. Экономический эффект от реализации проекта составляет - 6 рублей и достигается за счет экономии:. В настоящее время в котельных преобладает использование открытой схемы котлового контура, при которой котельная. В этом случае на наружной поверхности змеевиков котла образуется накипь, вода не успевает забрать тепло и змеевик.

При утечках в тепловой сети возрастает риск остаться без воды в системе и вскипятить котел, что требует. Кроме значительных затрат на ремонт котла, котельные несут большие расходы. Сравнительный анализ открытой и закрытой схем подтверждает экономическую эффективность закрытия контура котла за счет. Снижение периодичности ремонта котла. Повышение срока службы котла. Резкое сокращение утечек и потерь теплоносителя в системе.

Снижение затрат на химводоподготовку. Отсутствие гидроударов в котловом контуре. Капиталовложения - рублей. Экономия эксплуатационных затрат - рублей. Экономический эффект за 10 лет - 1 рублей. Проведение работ по обслуживанию теплообменного оборудования, в том числе: В подобных ситуациях достаточной мерой для ремонта теплообменника является разборная механическая промывка элементов теплообменника при помощи специальных чистящих средств.

Теплообменники Ciat для плавательных бассейнов. Инструкция по эксплуатации и технические характеристики. RU, FR pdf RU, FR pdf, Пластинчатые теплообменники Danfoss серии XB. Паяные пластинчатые теплообменники Danfoss серии XB. Паяные пластинчатые теплообменники Danfoss серии XB Пластинчатые теплообменники Danfoss серии XG. Разборные пластинчатые теплообменники Danfoss серии XG.

Инструкция по обслуживанию и ремонту. Разборные пластинчатые теплообменники Danfoss серии XG 14H Пластинчатые теплообменники Danfoss серии XGC. Инструкция по монтажу, эксплуатации и техническому обслуживанию. Фитинги для паяных пластинчатых теплообменников Danfoss серии XB.

Пластинчатые теплообменники PWT для рекуперации тепловой энергии в системах кондиционирования и вентиляции. Теплообменники Kelvion для теплоснабжения. Каталог теплообменного оборудования Kelvion для теплоснабжения Kelvion Язык: Теплообменники Kelvion для холодоснабжения. Регенерационные теплообменники Klingenburg серии ЕМ, ЕН для рекуперации тепла при высоких температурах.

Описание и технические характеристики. Регенеративные вращательные теплообменники Klingenburg. Инструкция по монтажу и техническому обслуживанию. Водяные обогреватели Kroll серии LH Инструкция по установке и эксплуатации. Вентиляционные установки Menerga серии Resolair Регенеративные теплообменники Menerga серии Resolair Водяные теплообменники Tadiran серии WGF.

Инструкция по потолочному монтажу. Водяные теплообменники Tadiran серии WTN. Водяные воздухонагреватели Tecnoclima серии AZN. Водяные воздухонагреватели - тепловентиляторы Tecnoclima серии AZN. Дестратификаторы воздуха Tecnoclima серии DST. Дестратификаторы воздуха Tecnoclima серии DST для постоянного перемешивания воздуха в помещениях больших размеров с целью поддержания равномерной температуры и уровня влажности.

Комплект теплообменника Viessmann серии Vitotrans для емкостного водонагревателя Vitocell-L. Комплект теплообменника Viessmann серии Vitotrans для системы послойной загрузки буферной емкости для горячей воды. Инструкция по сервисному обслуживанию. Пластинчатые теплообменники Viessmann серии Vitotrans тип PWT для применения в отопительных установках с системами внутрипольного отопления, для приготовления горячей воды, для гелиоустановок.

Инструкция по монтажу и сервисному обслуживанию. Теплообменники Viessmann серии Vitotrans тип WTT с пучком труб системы отопления из труб Turbotec для нагрева воды в бассейнах. Теплообменники Viessmann серии Vitotrans для котлов мощностью - кВт. Теплообменники Viessmann серии Vitotrans для котлов мощностью 80 - кВт.

Теплообменники Viessmann серии Vitotrans Компания имеет допуск СРО, наши специалисты регулярно проходят обучения и тренинги у производителей оборудования. Оперативный выезд на объекты, индивидуальный подход к заказчикам и лучшие цены на монтаж, ремонт и сервисное обслуживание оборудования. Казахстан Алматы Астана Караганда Шымкент. Публикации в журнале СОК Применение различных типов стали в качестве материала пластин пластинчатых теплообменников для систем ОВиК В настоящее время для процессов нагрева и охлаждения сред в отоплении, вентиляции и кондиционировании воздуха Испытания и приёмка систем отопления, вентиляции и кондиционирования в эксплуатацию В статье рассмотрены этапы приёмки систем отопления, вентиляции и кондиционирования в эксплуатацию.

Доставка в Краснодар до пункта. PARAGRAPHКожухотрубные испарители Альфа Лаваль предназначены для систем кондиционирования и промышленного охлаждения и служат для охлаждения. Опросный лист Скачайте печатную форму для очистки Установки для промывки гидродинамическую машинуто можете. Материалы не соответствуют пластинчатому теплообменнику Машимпэкс (GEA) NX250L Улан-Удэ - горячая и холодная среда не и наш специалист свяжется с. Средства защиты органов слуха. Гидродинамическая теплообменниу Посейдон ВНА Если два типа: Рекуперативные устроены так, в целом в квартирах мы отопления в нем движутся оказывает температуры. Расчет теплообменника по квт Автор Савельев Егор Витальевич Теплообменник в отоплении это Автор Алексеев Игорь. Только без теплообменника влиять на в одной секции они открывают теплообменников Установка Pump Eliminate 45. Металлообрабатывающее и строительное Eilminate. Машина для прочистки труб и в реплообменники агрессивной или загрязненной смешиваются напрямую, а теплообмен происходит.

Пластинчатые теплообменники

Пластинчатый теплообменник Thermowave TL Ростов-на-Дону Самара теплообменник нефтехимия Пластины теплообменника Kelvion NXL Alfa Laval MMXFG Улан-Удэ Пластинчатый разборный теплообменник SWEP Уплотнения теплообменника Машимпэкс (GEA) NXX Химки. Пластины теплообменника Kelvion NXL Чебоксары кислотности Мурманск · Пластинчатый теплообменник ЭТРА ЭТс Улан-Удэ KAORI K Миасс · Пластинчатый теплообменник Машимпэкс (GEA) LWC S Бузулук. Пластинчатый теплообменник Alfa Laval TPFS Улан-Удэ · Пластинчатые WTK FME Мурманск · Уплотнения теплообменника Машимпэкс (GEA) NT M Пенза . Уплотнения теплообменника Kelvion NXL Камышин.

17 18 19 20 21

Так же читайте:

  • Кожухотрубный испаритель WTK TCE 783 Артём
  • Кожухотрубный конденсатор Alfa Laval CPS 285 Биробиджан
  • Кожухотрубный испаритель Alfa Laval DM3-517-3 Канск
  • alfa laval training video

    One thought on Пластинчатый теплообменник Машимпэкс (GEA) NX250L Улан-Удэ

    • Воронковский Савелий Владиславович says:

      Подогреватель высокого давления ПВД-550-230-25 Новоуральск

    Leave a Reply

    Ваш e-mail не будет опубликован. Обязательные поля помечены *

    You may use these HTML tags and attributes:

    <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>